c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis.

نویسندگان

  • Hera Chaudhury
  • Mustafa Zakkar
  • Joseph Boyle
  • Simon Cuhlmann
  • Kim van der Heiden
  • Le Anh Luong
  • Jeremy Davis
  • Adam Platt
  • Justin C Mason
  • Rob Krams
  • Dorian O Haskard
  • Andrew R Clark
  • Paul C Evans
چکیده

OBJECTIVE Atherosclerosis is a focal disease that occurs predominantly at branches and bends of the arterial tree. Endothelial cells (EC) at atherosusceptible sites are prone to injury, which can contribute to lesion formation, whereas EC at atheroprotected sites are resistant. The c-Jun N-terminal kinase (JNK) is activated constitutively in EC at atherosusceptible sites but is inactivated at atheroprotected sites by mitogen-activated protein kinase phosphatase-1 (MKP-1). Here, we examined the effects of JNK activation on EC physiology at atherosusceptible sites. METHODS AND RESULTS We identified transcriptional programs regulated by JNK by applying a specific pharmacological inhibitor to cultured EC and assessing the transcriptome using microarrays. This approach and subsequent validation by gene silencing revealed that JNK positively regulates the expression of numerous proapoptotic molecules. Analysis of aortae of wild-type, JNK1(-/-), and MKP-1(-/-) mice revealed that EC at an atherosusceptible site express proapoptotic proteins and are primed for apoptosis and proliferation in response to lipopolysaccharide through a JNK1-dependent mechanism, whereas EC at a protected site expressed lower levels of proapoptotic molecules and were protected from injury by MKP-1. CONCLUSIONS Spatial variation of JNK1 activity delineates the spatial distribution of apoptosis and turnover of EC in arteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Targeting of 1,9-Pyrazoloanthrone an c-Jun-N-terminal Kinase Inhibitor Using Liposomes for Effective Management of Parkinson’s Disease

The major challenge to treat Parkinson’s disease (PD) is penetration of target molecule into the brain to improve the efficacy of drugs. To achieve better brain penetration and targeted delivery, 1,9-Pyrazoloanthrone (1,9-P) loaded liposomes were developed by solvent injection technique using ultrasonication and evaluated for particle size, morphology, entrapment efficiency, FT-IR, and in-vitro...

متن کامل

Brain Targeting of 1,9-Pyrazoloanthrone an c-Jun-N-terminal Kinase Inhibitor Using Liposomes for Effective Management of Parkinson’s Disease

The major challenge to treat Parkinson’s disease (PD) is penetration of target molecule into the brain to improve the efficacy of drugs. To achieve better brain penetration and targeted delivery, 1,9-Pyrazoloanthrone (1,9-P) loaded liposomes were developed by solvent injection technique using ultrasonication and evaluated for particle size, morphology, entrapment efficiency, FT-IR, and in-vitro...

متن کامل

Integrative Physiology The Subendothelial Extracellular Matrix Modulates JNK Activation by Flow

Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH2-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on fib...

متن کامل

The subendothelial extracellular matrix modulates JNK activation by flow.

Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH(2)-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on f...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2010